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ABSTRACT

Analytical investigations of two-impulse transfers between

elliptica.l orbits, using vector analysis and other mathema.tical techniquee,

have ylelded pertinent, heretofore unknown facts about an orbital transfer ‘
function. One particular mode of analysis, the Bell-Arenstorf technique, | = o
helped show not only that the minimum velocity increment solution between
two points on elliptical orbits could be along a hyperbola, but also that

there could be two relative minima in this impulse function, Particular

exa.mples of both t,hese phenomena are given.

orbits. An eighth-order polynomial expression, the real roots of which ma.y
refer to extrem in the impulse function, is determined. Since it can be

shown that some or those roots are ext.raneous-not corresponding to impul.see gﬁ’"

%, :,‘1

ninn—two test functions are neoct. deternd.ned that define reglions in which‘
all extrema must lie. These regions identify those roots that do corres-
pord to extrem in the impulse function and those that are extraneous.

These new amlytical findings have been incorporated into an earlier com-

puter contour mpping progra.m that loca.tea the optinmm transfer between
elliptical orbits.
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NOMENCLATURE

Semi-major axis

Eccentricity
Inclination
Right ascension of ascending node

Arfaaent of perigee, angle from reference axis
to perigee roint

Semi-latus rectum

True anomaly angle traversed in transfer orbit
"+~ plane

Gravitation constant .

Angle from reference axis to departure position
in initial orbit.

Angle from reference axis to arrival position in
: teminal orbit :

Angle between _1_'2 and r, - ry
Angle between r, and r, -5

Term defined in equation (14)

Functional form of 1lst velocity increment .
Functional form of 2nd velocity increment
Fuhctional representation of impulse

. Function defined by equation (Ll), whose extrema
... are also located in equation (37)




Scalars

g The other test function used in analyzing short
transfer
h One of test functions used in analyzing long
transfer
' k Other test function used in analyzing long
transfer
A-H Coefficients that determine interval- flnq1ng
polynomials
¢1—¢9 Coefficients that determine minimizing polynomial
o Function defined by equation (51)
T , Function defined by equation (52)
Vectors
e ' ‘ Orbit shape and orientation vector
, gl" “‘sctor from reference position to point of
- - ' _ parture on initial orbit
) Vector from reference position to point of
o arrival on final orbit
W  Unit vector directed along orbit's angular
momentum vector
v Vector defined by equation (13)
ytj Velocity vectors in transfer orbit
’Zj '~ Velocity vectors in initial and final orbit
¢ : ‘ypar : Velocity vector in parabolic orbit '
Ve Velocity vector in circular orbit

'fUnlt vectors in direction of radius vectors
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I. INTRODUCTION
One of the major problems of the hascent space age is concerned
with changing orbits in space. To transfer from orbit to orbit can require

immense quantities of fuel, far beyond the limitations of today's engineer-v:.f._.

ing. It is, therefore, of extreme practical interest to be able to locate

particular modes of transfer between these orbits that use the least pos- T
sible fuel.

The most general problem of optimum two-impulse orbital transfer,
in which the chief assumption is that the elliptical orbits are unperturbed,

permits both the departure point and the arrival point to be arbitrary and

finds the single best mode of transfer betwoen the two given orbits. 'I’he '
most gemral constraint is to fix the end points; then the optimization )
procedure is carried out solely along a para.meter derining all the transfer ,
orbits that go through these given terminals. |
The impulsive case of orbital traosfer is, of course, an ideal
situation. There is one instantaneous thrust from the initial orbit into
the transfer orbit; there is a second instantaneous thrust to get into the
final orbit. The information gained from the solution of this problem
should provide a basis for the study of orbital transfer with finite thrust.
- 'The ma jority of the published two-impulse orbital ti'ansfer work.
deals with fixed terminals and co-planar orbits(z'l‘). The recent work by

G. A. McCue(s ) represents an extension, by means of a numerical contour

mapping approach, to include bo’ch free terminals and inclined orbits. The

4:,- Cae L

analysis in the' paper pi;esented here is va]id for inclined orbits a.nd is :
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directed towards solving the fixed terminal problem. However, since it is

necessary to solve this problem many times before the free terminal problem

can be investigated by means of contour maps, the findings of this analysis

have been incorporated into Mr.chCue's numerical program. -t
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II. EXPLANATION OF PROBLEM FORMULATION
Two Keplerian elliptical orbits in space can be defined by their
orbital elements, a, e, 1,8, and w. In the general two-impulse orbital

transfer problem, it is desirable to locate the minimum velocity increment

solution between any two such Keplerian orbits. If the plane of the second
orbit of the transfer is the reference plane, then 12, the inclination of

the second orbit, is zero. The terms ordinarily referred to as the "nodal”
parameters,&ll, and {5, are made zero by selecting the line of intersection

of the two orbit planes as the reference direction. {(See Figure 1)

This lgaveé Seven orbital elements (al,'el, iy, w) and a,, 92,

wp—--subscripts one and two refer to elements in the first and second orbits
respectively) that define the two orbits between which the transfer is to_
be accomplished.

Three variables which define all possible means of transferring

from the first orbit to the second orbit are ¢1, the angle from reference
line (N) to a departure point on the first orbit; §5, the angle from ref-
erence line to arrival point on second orbit; and p, the semi-latus rectum
of the transfer orbit between the two points. The parameter p is chosen
as the third variable because i. simplifies the nature of the impulse
function.. Other formulationa for the third variable can produce serious
discontinuities ( v :




The "total impulse' used in transferring between the orbits is
defined as the sum of the magnitudes of the velocity changes necessary to
get from the first orbit into the transfer orbit and then from the transfer
orbit into the second orbit, In this paper, an optimum impulse solution ‘(;;

refers to a particular configuration of the three variables that leads to

the leasi rossible impulse between two_orbits. A minimum impulse solution -
refers to the transfer orbit which gives the least total impulse for a

given arrival-point, departure-point configuration.
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III. TRANSFER GEOMETRY

In rendering the orbital transfer problem subject to analysis,
it is most convenient to express the important quantities in their vector
representation. The vectors b ] snd r, represent the vectors from the
attracting body to the departur§ and arrival points. Define unit vectors
"U; and U, in the direction of I and r,. The components of these vectors

are then given by

U, = cos $,L+sing cos iy J +sin $ siniy k (2)
U,=cos @, i +sinp,J ‘ (3)
B S R W, m=1,2 W)
ﬁ 1= [1+emcos(¢m-wm)] Sy 7 = - -

where i, J, and k are unit vectors in a right-handed Cartesian system with
i in the direction of N.

Three more useful vectors in the analysis are W,, and We—

W,
these are normal to the initial, fimal, and transfer orbit planes and are

defined as follows:

Wy =-sini) j+costy k (5)

W, = K | (6)

Ht=_:§1_15_!2_ where |U; x Up| # O (7)
Y x Uy

: To complote the vector description, define two vectors &; and er—

these define the shape and orientation of the two orbits(6).
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& = o (cos wy 1 + sin upcos ip J + sinwy sin i k) )
- 8

where m = 1,2

The part of the transfer orbit traversed in the transfer is a

certain true anomaly interval AQ, This interval may be quickly determined

from

cos A9 = (U . Up) 0°< A6 < 180° (9)

No generality is lost if the true anomaly interval is limited to
the first two quadrants. Although this does restrict the problem to "short
transfers,’ if the g;gr_l_s_‘of the velocity vectors in the transfer orbit are
changed, the long tralnsfers may be considered. The singularities in the
impulse function at AO = 180° and AQ = O° indieate that the problem is
simplified by considering the long and .short transfers separately. Thus, |

ih order to determine the absolute optimm transfer between two elliptical
ox:Bits, it i;necessary to compare the optima found from all the short
tz‘-ansfers and all the long transfers.

For every elliptical transfer orbit between a given departure
point and arrival point, there exists both a short transfer and a long
transfer. However, when considering particular hyperbolic transfer orbits,
it is important to realize that sither the short transfer or the long o 3

transfer is meaningless—it would require going out to infinity and back.
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IV. THE BELL~-ARENSTORF TECHNIQUE

The "Bell-Arenstorf technique' refers to a geometrical method of
analyzing the two impulse orbital transfer problem. This methcd is based
.upon some cogent variable relationships recognized separately by Mr. H. W.

Bell of North American Aviation, Inc.,(7)and Dr. Richard Arenstorf of

Marshall Space Flight Center (82 The fundamental idea of the method -~ that
all possible transfers between fixed terminals on any elliptical orbits can
be represented by two hyperbolae - provided the stimulus for much of this
analysis.
For any two elliptical orbits, let ry and 1, be the vectors from

the reference position on the line of intersectlon to the departure and

. arrival points, respectively The angle between them is AG and the size
of this a.ngle can be selected to be always in the first two quadrants with-
out any loss of generality. By i’on;:ing the vector r, - ry, a triangle is
m;de of the'ghree vectors in the transfer orbit plane.

Define the two angles a and 8 (Figure 2) as follows:

ra| sin 40 (10)
L -1

B = arcsin

a = w- (B+40) | (11)
Consider the locus of all possible velocity vectqrs that can act
upon the point defined by r; and trace a conical orbit path that goes
through the point defined by r,. This locus defines all possible conic
transfer orbits between the two points, since a particular orbit is uniquely

defined by its #nlocity>§ector at @ given position.
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The velocity vector of any transfer orbit at the particular point

r, is given by (See Appendix 1)

Lao=v+zhy (1?)
where
y= 0} (2 - 1) (13)
) x rpj .
- 2 =(£)? tan 22 (1)
P 2

where p is the semi-latus rectum of the transfer orbit. Then Vi1 may be

written as a function of this variable p.

5 ()t [P lz2- a0 | (15).'"‘%
- Tale) (p> [-———lzlxzzlh*‘tan > .lll] |

where m is unit vector in the direction of r, - Ij. Every poa.itive value
of p greater‘ than zero defines a certain transfer orbit whose velocity
vector at ry has components in the direction of m and gl.

For any coordinate axes, the locus of all points such that the

product of the coordimates is a constant forms a hyperbola with the axes

as asymptotes. Since the product of the magnitudes of the components in

the m-direction and the U direction is independent of p,

[ (#p)* |2 - £1I] [(_&,) 3 tan-A—O-:] - ptan 2 [E2 - m1l (14
|E1 x r2 P 2 |1 x r2

the. formulation of Vi, defines a hyperbola with:the oblique coordinates

establishe& by m and gl as asyniptotea.' Thus the locus of all possible

velocity vectors leaving r, and arriving at r, on a conic path forms a

hyperbola. '
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Similarly, at r, the velocity vector for any transfer orbit
(dependent upon its semi-latus rectum) is given by

Li,=v-20 (17)

This defines another hyperbola that represents the locus of all possible

transfer orbits leaving fro;n ry and arriving at Lse These are shown in
Figure 2. It is important to note that for every p, there is one point on
g;g_cg of these hyperbolae that represents the transfer orbit.

- These two hyperbolae refer to the so-called short transfer, in
which the true anomaly interval tr#versed in the transfer orbit is less
than 180°. If the true anomaly interval is greater than 180° ('long
transfer"), the other branches of these same two hyperbolae represent the
locus of all transfer o'rbits. These are obtained by simply changing the
sign of Vyy and Vy.

B In Figure 2, the vectors ¥, and V,, defining the initial and

final orbits, are in the transfer orbit plane to simplify the analysis.
Then this particular Bell'-Arenstorf diagram represents a coplanar transfer

and 11 and y_z, defined by
) RS
v, = (-’.‘-) W, x (g +Uy) (18)
Py
_ K (19
Lo (f) fx et )
2
must have m@itjudes less than parabolic speed (Vpar).
v, =28 (20}
- par r .

In the Bell-Arenstorf diagram, the vectors L am ¥, (which uniquely define

the initial and final orbits) emnate from r, and r, and must lie within a




certain radius containing all elliptical orbits.

In finding the minimum velocity change solution for this two-

impulse case, the function to be minimized is

I(p) =¥, (p) +¥(p) (21)
where
\yz(P) = 112_ + Vtg (P)I (23)

The double sign on the transfer velocity vector refers to short and
long transfers (upper sign is short). In the diagram, this optimization

procedurev requires t‘.hat.’ ,th,e,, sum of the distances from y_l and \_12 to their
respeCtiie transferloci be mirﬁmized. Fof every p, there is one and only
one point on each hyperbola corresponding to that transfer orbit. The dis~
tances marked. Ilp .and I2p (In Fig\me 2) represent simply a particular
transfer orbit chosen for illustrative purposes. The sums of their mag-

nitudes would represent the impulée necessary to transfer between these

two points along that particular conic.
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V. APPLICATION OF BELL-ARENSTCORF TECHNIQUE

The Bell-Arenstorf technique‘provides an excellent geometrical
image of what is occurring in the two-impulse orbital transfer. By comparing

the magnitudes of the impulse vectors for different transfer orbits, one

can gain an intuitive feellng for the size of the impulse for a particular

transfer orbit. DMore important, though, was the fact that the Bell-Arenstorf

technique offered clues to two of the more important questions in the field.
In Mr. McCue's paper (5) he conducts a numerical search for the

minimmn impulse for each arrival-point, departure-point configuration and

then, by a method of contour mappix_xg, locates the optimum transfer between

any two elliptical orbits. One of his early assumptions was that there

~could only be one mimimm in the impulse function (variable p, semi-latus
rectum of transfer orbit) for a fixed pair of terminals. The Bell-Arenstorf | o f”.}"
technique clearly showed the existence of a double minimum for a certain
case and thus implied the existence of certain configurations under which |
a double minimum may be present. ‘

It has been implied in nearly all of the definitive analytical
works in this area, such as that by Altma.n(B) , that the minimum velocity
increment solution between points on elliptical orbits was always an
ellipse. The Bell-Arenstorf technique suggested the e)d.stence of hyperbé].ic
minima for certain configurations——this fact was subsequently proved. '

The use of the Bell-Arenstorf technique stimulated further analytic

investigations whose findings have been incorporated into Mr, McCug's op-

timization program.
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VI. LOCATION OF DOUBLE MINIMUM

In order to assert that there can be a double minimm in the
impulse function for fixed termimals, it is necessary only to find an ex-
ample. By considering a particular case with unique symmetry properties,
this example can be readily illustrated.

Consider the case where | rll = lrzf (Figure 3). This makes
the angle a (Figure 2) equal to the angle 8. Then the hyperbolae formed
between the oblique axes at both the departure point and the arrival point
are equivalent. If the entire coordinate system at r, were flipped over
and translated to r;, then these two hyperbolae would become coincident—
they would mat.ch np point for point, transfer orbit for transafer orbit.
Then the impulse function for particular empbical orbits (defined by '
il and V,, both of which now act at the same point) is only the sum of the
dizstances fréx; y_l ard 22 to all points on the hyperbola. Then, for this
case, the minimm impulse solution corresponds to the point on the hyperbola
from which the sum of the distances to Y‘l and 12 is a minimm.

For points with equal radli, one possible transfer orbit corres-

ponds to a circular transfer. This transfer has a velocity vector (V.)

perpendicular to the radius vector and its magnitude is given by

Zﬁ . (22)
r

All velocity vectors emamating from that have magnitudes less

r

1

than (2_’.‘)i define elliptical initial and fimal orbits. In the diagram
r .

this range for 11 and 22 is described by a circle marked parabolic orbit limit.

— e
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Suppose U, and V, are located in such positions (See Figure 3),
relative to each other, that the line connecting them intersects the hyper-
bola (either short transfer branch or long transfer branch) twice. As p

varies from zero to its unbounded upper value, all possible transfer orbits

have a corresponding point on the hyperbola. As p increases along the
hyperbola, the value of the impulse is obviously decreasing until p reaches
the value corresponding to a, where the line between Kl and \_72 intersects
the hyperbola. For values of p slightly larger than a (such as the p cor-
responding to point b), according to the triangle inequality the impulse
must be higher. Thus the value of p at a must constitute a relative min-
imm in the impulse function. |

As p nears the value corresponding to point ¢ on the hyperbola,

the tfiangle inequality states that the necessary transfer impulse is going
down again..rFor points past ¢, the impulse is rising again, and thus c must

also be a relative minimim, The fact that there can be two minima is thus

demonstrated.

Numbers were placed into the diagram and indeed a double minimum
(See Figure 4) occurred. The orbital elements for that particular fixed
terminal case are given on the graph. For this case, the long transfer

provides a greater impulse requirement for all transfers--thus only the

short transfer is plotted.
In Appendix 2 a short mathematical inyestigation of the criteria
for the existence of the double minimum in the case of equal radii is |
carried out, This investigation, which did lend some intuitive understanding o

to the problem, was not easily extendable to the case of non-equal radii.

-15-
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VII. TLOCATION OF HYPERBOLIC MINIMUM

The- assumption has been made, in prior two-impulse orbital
transfer studies, that the minimm transfer between two points on elliptiT
cal orbits always lies along an ellipse. Although this has never been

proved, it has been generally accepted. Use of the Bell-Arenstorf technique

showed this assumption to be false.
For the case ongl]=[§2], it is clear from Figure 5 that a

hyperbolic minimum may exist. Once again, the coordinate system at r, is

rotated and flipped such that all possible transfer orbits are given by

one hyperbola. If the vectors Kl and 22 lie in the shaded region (see

insert), the shortest distance from each to the transfer orbit hyperbola

arrives at a point on that hyperbola outside fhe parabolic orbit limit. | ,1#&
- Since the least velocity increment - both to arrive in the transfer orbit o
and depart from it - lies along hyperbolic transfers, the sum of the two,
the impulse, must have its minimm along a hyperbolic orbit between these

two,

In investigating the more general case of non-equal radii, the
geometry yielded not only configurations for which the minimum velocity
increment solution conld lie along a hyperbola, but also some other interest-

ing properties about this orbital transfer function.

The general Bell-Arenstorf technique diagram can be modified (See fy;
Figure 6) in such a way as to orient both hyperbolae about the same ‘
coordinate axis with a common asymptote. Since for every p, the semi-latus
rectum of the transfer orbit, there is one and only one point on each

hyperbola, some manner of relating corresponding transfer orbits must be
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found. In Appendix 3 it is shown that there exist two families of circles,

2 =1
intersect the hyperbolae in such a way as to identify the points referring

with centers on the r, - r, axis and radii dependent on the parameter p, that

to the same transfer orbit. One family refers to the short transfers; the

other, to the long. The short transfer family begins at the origin, with a

member of infinite radius, and moves left through 2ll possible values of ;
the long transfer family goes in the oppcsite direction, also with increasing
radius magnitude,

For every fixed arrival-point, departure-point configuration, there
are two bounds on the values of the semi-latus rectum of the transfer orbit
that define all elliptical transfer orbits. These "parabolic orbit limits"

(%) '

are defined by

. r.r r r
.‘min = . 1'2--1, =2 (25)

ry *ryF(2rr, 20 . ks

In the Bell-Arenstorf diagram, as p increases from zero to infinity,

the radii of the family of circles diminish for both the long and short trans-

fers. It is important to note that for P> Ppaxs the long transfer's being
along a hyperbola is meaningless; similarly, for P<F.:n> the short transfer
implies going qpt to infinity to complete the orbit.

Regardless of what ry and r, are, there exists some value of p
that defines the lower limit of elliptical transfer orbits. The circle

marked "parabolic orbit limit" has its center at a poimt that is a value of

P at which the long transfers change from hyperbolic into elliptical. Even

though it is true that for every I and r, this circle is located at

-19-




a different place, it is important that it does exist somewhere and thus

can be located arbitrarily. Then all initial orbits whose velocity vector
at ry lies inside the circle of radius A are elliptical; similarly for all
final orbits whose velocity vector at L, lies inside the circle of radius

B. Suppose the initial and fimal orbits define velocity vectors V, and

LS

first increment change (to get into the transfer orbit) and the least fimal

such that they are located as in Figure 5. It is clear that the least
increment change are to transfer orbits that are hyperbolic. It is an easy
extension to see that the sum of these two is a minimum along a hyperbola
somewhere between these. '

In Figure 7, impulse is plottgd against the semi-~latus rectum of
the transfer orbit‘for a particular configuration. The parabelic orbit

“1imits are marked and the orbital parameters are given--clearly the minimum

transfer is along a hyperbola.
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VIII. ANALYSIS OF IMPULSE FUNCTION

The location of these peculiarities in the impulse function
prompted an analytic search into the equations that describe the impulse
problem. New analytic‘boundaries, different from the parabolic orbit

limits, were sought for the minima. For fixed terminals (once again it

should be pointed out that this is a restricted case of the more general
problem of optimizing between any points on elliptical orbits), the impulsé
function is only dependent on p, the semi-latus rectum of the transfer
orbit. This impulse function, defined by equation (21), has an extremum

at all points p where

oL -\ . N2 _ g ’ (26)
9P op ap -

In the analysis of the impulse function carried out here, only

the short transfer: are considered. It is shown in a subsequent section

that the extension to include the long transfers is very simple. s
Now o
V() = [ () - 8) - Gy () - 1] 2
- () 2 Y - 1) L ) ey - 5] R
- [ro * e
where | . |

<3

£(p) = w(p) . wlp) +2%(p) + Yy . Yy - 22(p) Yy . Yy

- 20y . w(p) + 22(p) w(p) . Uy

= Ar + 2Bpé + G- 2Cp‘é - pp~1 (28)

where the coefficients are given in Table 1.
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‘Similarly, ,

¥ ,(p) = [e(p)] 2 (29)
where

g(p) = Ap + 2Ep% + H - 2Fp"d - pp-l (30)

where the new coefficients are also given in Table 1.

Then, in order for impulse to be an extremum,

Wy o, M 1o, 1ok -0 (31)
dP P 2y 9P 2 3P
e 4 (32)

vo (p) 3%_

Since \I’l(p) and ‘I’Z(p) are always positive, it is easy to see

from equation (32) that ? and gg must be of different sign before an
. p .

extremum can occur in the impulse function. This important fact permits
the identification of the extraneous roots in the eighth-order polynomial
that will be derived. ml

Then
opP )
and
gg = A +5p? +Fp/2 4+ pp2 (34)
p N

Before a meaningful expression can be worked out for the extrema
in the impulse, equation (32) must be squared. Then the necessary expres-

sion becomes
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or

£(p) (%)2 —g(p)(g—;>2 =0 (35)

When this equation is multiplied out using equations (27), (28), (33), and

(34), together with the substitution
s =pb (36)
the necessary condition for an extremum becomes

gys® + ¢237 + ¢386 + ¢L55 + Peat + B + Bs2 + o + '¢9 =0 (37)

where the coefficients ¢i’ i1 = 1-8 are given in Table 2. The real roots of
this eighth-order polynomial must include all the values of p for which
the impulse is an extremm. '

The Squaring prdcess introduced in equation (35) added some

-extraneous roots to the octic—roots which do not correspond to extrema
in I(p). These can be identified by factoring equation (35) as the dif-

ference of two squares.

Y - a1y° _
£(p) (28) - &(p) (ap) 0
= (v;(p) B +¥,(p) §E) (¥1(P) BB - W, (0) &) = 0 (38)
Since g% and gﬁ must be‘of different sign, only those real values of p
which are roots of
¥ (p) 28 + W, (p) L = 0
1p) & z(p)ap (39)

are true extrema of I(p). It is easily shown (See Appendix 4) that the

equation

: ~26-
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V. 98 - W(p) oL -
1(13)()p 2 (p el (L0)

contains the extraneous roots of the octic and refers to extrema in another
function, I*(p). Then
I#(p) = ¥1(p) - W (p) : (41)

Inquiries into the nature of this octic suggest that four of these

roots refer to extrema in I*(p). Although no general proof has been made,
if this fact were true for all configurations, then there could be no more
than two minima on either transfer branch. This would greatly simplify
the application of the contour mapping approach.

In Mr. Altman's paper, he identifies an eighth-order polynomial,

the roots of which refer to minima in the case of two-impulse orbital -

transfer between coplanar orbits. Equation (37) extends the analysis,

using different techniques, both to include inclined orbits and to identify
those roots of the equation that are extraneous and do not refer to minima

in the impulse function.

-27-




vt 2 NQRT H AMEHICANA-AV'AT'O&-t.-Nc-s:‘x@%W‘# INFORMATION. SYSTEMS. DI 18

IX. THE BOUNDARIES ON MINIMA

Since a necessary condition for the existence of an extremum in
the impulse function is that gé.and gf be of different sign, analyses were
next direct: to determine the values for p for which they could be of

different sign.

From equations (33) and (34),

Lm or _ Hm ogg _ (42)
where
,u.lr - ."-“2
lry x £a|®
and F
+ Q_i.: = + @.K: - 00 - (M) T
p—0  9p p—~0  9p : ‘
because
D= - putan? &9 (L5)
' 2
Since for p both very small and very large, g% and g% have the same sign,
we know that the region in which 9 and 98 are of different sign may def-

op ap
initely be bounded. The boundaries in which all minima in the impulse

function (on short transfer side) must lie are given by the least positive

value of r and the greatest positive value of p at which either

.

Q

df = 0 or 98 = 0 (Lé)
ap

QU
o

Since, for s = p3, 9f = O where
op
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AsL + Bs3 +Cs+D=0 (47)
Similarly, dg = O where
ap
; (1
As® + E33 +Fs +D =20 (28)

These values for p that bound the minima can be readily obtained. It is

shown in a subsequent section that these equations also give the intervals

for the long transfer. Thus, definite, analytic boundaries on the possible

range of the impulse minima have been ascertained.
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X. THE INTERVALS _
Since both g% and g% have negative values for p very small and

positive values for p very large, both expressions (47 and 48) must have

an odd number of positive real roots, Each of these quartic equations may

have either one or three real positive roots. Regardless how many of these

roots each of these quartics has, all possible combinations of the roots
can be studied by investigating two types of intervals in which g% and g%
may be of different sign.

. of
Type A: 1) &5 and gé of different sign in [a, b]

(49)
9, T,
Type B: 1) gﬁ-and %g of different sign in [a, b K
| - (50)
2, L
P/, ., Pl -

It is important to note that if, in equation (49), §£ and gg
P

are zero at opposite ends of the interval from those given, the problem is

not really changed. Similarly, if in equation (50) it is §§>which is zero

at both ends, the analysis of the types of intervals still holds. In type

A each of the functions is zero at one end of the interval; in type B, one

function is zero at both ends of the interval. The two types of intervals

are illustrated iﬁ Figure 8. . e
These intervals are divided into two types because the number of

minima possible in a given interval i3 determined by its type. Define two




Tt (T

functions o(p) and t(p) as

f
o(p) =- & (51)
ar | e
t(p) = 1 (p) (52)
¥2 (p)

Obvicusly, an extremum irn the impulse function occurs for all p at which
o(p) = v(p).
Consider an interval of Type A. T is monotonic increasing and

positive for all p in [a, b]. Also, note that

c(a)=0 (53)
and -
lim o(p) = o O : | (54)
P-=b

From Figure 8, it is clear o and T must intersect at least one time (pro-
ducing one extremum) in that interval. If they are equal more than once,

they must intersect an odd number of times.

Consider next an interval of Type B. Once agzin t is monotonic

increasing and positive for all p in [a, t]. Here, though

o(a) =0 (55) :
and F
c(®) =0 (56)

while for all p in [a, b], c(p) > 0. It is evident from Figure 8 that
o and T must intersect an even number of times in intervals of this type.
All possible permutations of the roots of these quartics can be

manipulated to reduce ‘the problem to an analysis of these intervals. Most
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frequently, both g% and g%.have one real, rositive root and produce an

. interval of type A in which o and T intersect one time. t is also true
that, for the majority of the cases, the first and last real positive
roots of the two quartics will limit the search for.the minimum impulse to
ellirtical transfer orbits. These analyses do, however, explain the ex=-

istence of the two peculiarities located earlier.

]
3
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XI. LONG AND SHORT TRANSFER

For nearly all the equations derived in the preceding sections, W
it was assumed that the two-impulse orbital transfer was accomplished with
a true anomaly interval in the transfer orbit of less than 180°--short

transfer. The symmetry of the problem makes extension to include the long

transfers very simple. To obtain the absolute minimm impulse, the two are
then compared.

Because of the symmetry (See Appendix 5 for detailed derivation
of long transfer equa.tioris) it can be shown that the real, negative roots .
of equations (33) and (34) determine intervals on the long transfer side
that may produce m.nima. S:Lmilarly, it is the real, negative roots of the
general octic (Equation 37) that appear \d.thin thoae specified intervals

that determine values of p for which the long transfer may be an extremum.

This implies that all the analysis can be conducted by examining
three equations--two quartic and one octic. The real roots of these
equations——positive for short transfer and negative for long transfer--

define all the intervals in which the extrema may exdst and then locate

the values of p at which extrema actually occur.
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XII. MODIFICATION OF COMPUTER PROGRAM

In Mr. McCue's work, he optimizes the transfer between two
elliptical orbits (not fixed terminals) by means of a contour mapping
routine in the ¢1-¢2 space that connects transfers of equal impulse re-
quirement. In locating the minimm impulse for a particular $,-#, configura-

tion, he conducts a numerical search minimization along p that is confined
within the parabolic orbit limits. The results of the analytic investiga-
tions presented here have been incorporated into the program to remove

the limitations.

The solution of the two quartics (Equations 33 and 34) gives
the intervals to uhich the rmmencal search for minima may be restricted.
In nearly all cases a searcim v:lthin these limits will require fewer itera-
tions than one couincted with the old arbitrary limits. - If the steepest

descent program should—in rare instances—converge on two different values

within the same interval, the octic equation may be solved and its real
roots compared to the intervals of possible minima. For nearly all ¢1-¢2
configurations, this process will require no more computer time than it

did before the limitations were removed.




TABLE 1
CCEFFICIENTS OF TEST FUNCTIONS

_ #liz - nf?
|2, * Ip

- p ) B
(p1)2x; x | [(52 £) . (W) x (g + gl))]

an
(py) [Ul'(y‘lx—gl)]
- u tan? &8
p tan® :
m

= - (- n) . W, x (e, +U,))
'(Pz)élzlx?.zl [,2 "‘1 2 2 0 =2 ]

fa'e]

-Htan 2 :
(:Z) [Qg . 0’—’2 x 9_2)]

Ja’e)
12 4 24tan 2 - ]

o LYo x (e + Up)]

20
2 _ 2HKtan 2 [U (r
ﬂ'

|5y * L

L 21)]
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XIIT. SUMMARY

New analytical approaches to the two-impulse orbital transfer
problem are developed in this paper. This development precipitated the
discovery of both the hyperbolic minimum and the double minimum in ﬁhe
minimum velocity increment sclution between points on elliptical orbits.
Further analyses produced an eighth-order polynomial-—applicable even for
inclined orbits--whose‘ roots contain all possible extrema in the impulse
function. Next teét functions were located that placed bounds on the ‘
regions in which these extrema could exist and identified those roots of |
the octic ’that were extraneous. The explanation of these extraneous o
roots-not corresponding to min:lm in the impulse mnction—-was given:
R o am these results have been used to modify an earlier computer %

e

program. It is now possible to locate not only the absolute gi_m two- S

impulse transfer between fixed/termimls for any elliptical orbit pair, but

also the absolute optimum transfer between any end poirits on those orbits. CEA

A
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TABIE 2
CCEFFICIENTS OF EIGHTH-CRDER POLYNOMIAL
A%(G - H) + A (E% - B?) T
2 2 2 b
A<(LF - 4C) + A(2EG - 2BH) + 2E“B - 2EB
A(8BF - 8EC + 2EF - 2BC) + E2G - HB?

" A(LED - LED + 2FG - 2CH) + ABEF - 2B - LBCE + 2FB2

D(24G - 2HA - E° + B2) + A(F? - C2) - 2BCH + 2GEF

D(LFA - LAC + 2EG - 2BH) + LFBC - LCEF + 2BF2 — 2EC2

D(8EF

8EC + 2BC - 2BF) + F%G - CH
D2(4B - LE) + D(2FB - 2HC) + 2FC? - 2CF?

D2(G - H) + D (C? - F2)
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APPENDIX 1
Derivation of Transfer Velocity Ixpressions:

These equations appear in reference (5) and were originally

derived by Mr. H. W. Bell.

Begin with the vector expressions for the transfer orbit velocities,

3
ytl (p) = <_/}:‘> Ht X (Qt + Ql) (A1-1)

(ifé My x gy = Up) (h1-2)

Vir (B)
2 D

where N is a vector, not necessarily explicitly defined, that has the
magnitude of the eccentricity of the transfer orbit and is in the direction
of its perigee.

. Then for all transfer orbits that include ry and I

P
RATE
l+gt '9—1
| 2ol =
£2=_.__.._—_—
1+ g - Us

and by algebraic manipulation

P
g . U = -1
SO =1 R
p
& . Uy = -
2 Iyl

Then multiplying these equations by U

o and U; gives

.



t ‘ll
and '
’ P
(e L 0N Y =1 (-—— -1)
-2 1 l 2|

'I'hen according to vector identities

(legz)xgt=-gtx(l_llxgz)

(Uy . g) +U,(U; . g)

- U—l &
- P p (A1-9)
U -1) -U -1
-2( |2, ) ! ( | 25| ) ; |
Notice that . .= . o w4
x(gt*'Ul)‘ ]%X—%“X(gti-gl) . ‘
UGxG)xe |, (@mxU)xl o
T g xU, U, x U, | | -
%] 2 1% 22 (A1-10)
. g( ] -1 E}L(l l-1 +U U y)-u @G . w) e
. |5 x —2[ i
Similarly, B
P p
Us (1—"1| ‘l) 3 g1(1221 "12 -9 Uy« Uy) + U, (U . Up)
W, x (e, +U,)) = o2 —=c
=t =t =2 U x4,
'  (A1-11)
Then from Equations (Al-1), (Al-2), (A1-10), end (A1-11), L
% 1 U U
e = (4 [ (Z -2+ a-y .y
£1(P U x Gy | P\inl Iz, 1 =2 %




p\E 1 u _ %
V()=() [p( - )-(l-U.
t2%P p |U; x Uy I £l Il =1
note that
Ul . U2 = ¢c03A@
and
,I_Jl b'e QQI = |U1| [U2| sinA@ = sin AG .‘
Furthermore, T.f
P [-‘12 _L’l}: P {[—’2 p - oo
|5 x Uy 5l 121 |9y x Yp| |T;1 IEp! ]
= P&y-n)
BN F SRS s:zl
therefore, o
Y1(p) = (:
But

"l - coAs AO
sin AG

which implies that
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Similarly, from (A1-13),

Violp) = v-21

where
_ (up)? (z; - ny)

- ’21"-1-'-21




APPE!IDIX 2

On the Criteria for Existence of Double Minimum in Case of Equal FRadi.:

After the existence of the double minimum was first established,

the next research was directed toward finding the necessary and sufficient

conditions for this existence. 1In the equal radil case, the answer was
more or less obtainable.

If, for any L - I sonfiguration vier: l;;ll = lgzl, the transfer

velocity (See Figure 2) hyperbola is considered to be symmetrical about an -

x-axls of a rectangular Cartesian coordinate system, the analytic equation

of this hyperbola can be derived. From the general expression,

and the knowledge tha.t _ , | |
tan (LS - .é_O.) = 2 B v (a2-2) -
L b : 51

and the fa'ct that there eScis'cs one point P, on the hyperbola where

Py V= (—r'l'l'—)i sin;\I/i._;‘” (-ri) cos ¥V 3 | (AQ-B)'
Vo= 45° + .‘3% _  (A2-b)

the equation for this hyperbola is given as
r(y2 cos%l’ - x2 sin 2¥) =p cos 2V (A2-5)

where

SR | =




s

pcos 2¥ (a2-7)

T T sin 2V
.2 _ _ pcos2¥ (A2-8)
- r coslV¥

The two elliptical orbits, initial and final, are defined by
their velocity vectors at pj and r5. The coordinates of these vectors in

the same coordinate system as the hyperbola are readily found from the

geometry and elementary celestial mechanlcs(l)

Suppose*
Y'l = x i+y i (A2-9)

Then for every' pair of el]iptical orbita, two po:!.nts in this

system are determined There is al.so a corresporxiing magnitude dv, where
- - = [(x2 -xl) + (y -¥,) P ‘ (a2-11)
In the Bell-Arenatorf diagram, it is important to remember that for
the case where rl _2 " impulse for a pa.rticular tra.nsfer is nothing more i
than the sum of the dist.a.nces from v and ¥, to the point on the lvperbola

representing that transfer. :

For amy initial and final elliptical orbits, let the points

defined by V; and \_7_2 in this coordinate system be considered as the foci

for a family of confocal ellipses. Each scalar value k,

#* The actual analytic expressions for these coordinates have been omitted

because of their detail.



where k 2> d,

defines a member of this family. Iet
k= sl + s,

Then s, and s

1 2
¥, to that ellipse—their sum must be a constant for any member of the

-

are, for any particular ellipse, the distances from V a.nd
family. '

In terms of the Bell-Arenstorf diagram, each member of the family
corresponds to a certain impulse value--as k grows larger, eventually a
member of the family (See FIgure A2-1) intersects the hyperbola at a point

of tangency. That point on the hyperbola, representing a particular tra.nsfe;: .

orbit, must be a rolntive nr.i.nimm in impulse. _ This is easily seen if ¢ e.:,

higher impulse. It is an easy intuitive extension to realize that every ;
[

point at which a member of the fa.mi]y of ellipses is tangent to either

short transfer.

In Figure A2-1, on the right,an example is given of a typical
_\Ll - \_72 configuration that produces ane point of ta.ngency;-one re]ative'
minimim--on each of the two branches. | The other example is a Il. - 12
configuration that produces a double minimum (see members 2 and 3 of the‘y
family) by having three points of tangency on one branch of the hyperbola.
Note that if the family of ellipses has three members tangent to one bre.x:i;:ﬂ
of the hyperbola, there must exist some member of the family that imter-

sects one branch of the hyperbola four times.




Since the analytic equation for this family of ellipses, using

+ 8 = k as the variable parameter, can be readily derived, the criteria

[4)]

1

for the existence of a double minimum can be simplified--for some member of

N

the family, the fourth-order polynomial representing the intersection of
that ellipse and the velocity hyrerbola has four real roots of the same
sign (on the same branch) it and only if a double minimum exists on that

branch.
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APPENDIX 3
Method of Determining Corresponding Transfers on Velocity Hyperbolae:

In Figure 6, the hyperbola representing all possible transfer
orbits that an-ive at r L, and pass t.hrough r is transformed so that both<‘
of the hyperbolae have the same reference point ‘and one common asymptote. s
| It is next necessary to determine the corresponding points on the hyperbo]la;edzﬁ*
that is, to find some way of relating—transfer orbit for transfer orbit-—the”
point on one hyperbola with the point defining the same transfer orbit on the
other hyperbola. Because of the high symmetry and so that Figure 6 mz:xy be,

used, only the long transfer has been considered here.

~Then if .. = ‘~ R
& J e Iz <l Sl i
=gl .
and ) LA . g ; :
b = fitan &

and & is defined as a unit vector in the direction of ;2 r1 -
Vii(p) = - lcpi m - w? 13} |

Vio(p) = - kp)" mt hI"i y | : , (Bf‘»)

It is obvious then that these two velocity hyperbolae have
equal components in the m-direction. Furthermore, for each vector, the ;
magnitude of the other component is the same. Thus the only significant |

difference in these functions is given by the different directions of _Ql



For any real, positive value of p, the component of eéch of

these transfer velocity vectors in the I, -5 direction is given by

- - 3
Y1 (comp r, - 21) Y2 (comp I, - 51) - kp (A3-5)

Thereforo for any p, there exists soms point on the r, = r1

axis that corresponds to this component. Suppose a circle of radius r*,i

where
o = np? (A3-6)

is circumscribed about that point as center. Then both the transfer velocity e
vectors for that particular transfer must end on that circle. Therefore, fér:
any p, there exists a circle uith center at a point on the ;2 ;1
that uill 1ntersect the hyperbolae :t the corresponding points.-

T It is an easy extension, herefore, to realize that the corTs
ponding pointg on tho hyperbolaa'are located by a family of circles‘withf

variable radii and centered on the ro - L




APPENDIX L4
Identification of Extraneous Roots to Cctic:

The eighth-order polynomial expression (Equation 37), whose .
roots contain the values of p at which the lmpulse function has a mdniﬁuﬁ !

‘also has some roots that do not refer to impulse extrema., o f?f-;'*

produce Equation (38),

Yi(p) 98 +V¥ (p) oF % _y, ) )=
(1) op 2 ap) (¥2 op 2P ap> °

It has already been shown that the equation

gives rodts to the octié'ﬁhqse~p values do correspond to extrema in th
impulse function.

The other factor

Sa . . -

o ‘(‘I’l(p»)ﬂ c% -‘\I}z(ps §§)=°

produces roots to the octic that have no correspondence with impulse
extrema.
Consider the function I*(p), where

T%(p) = ¥, (p) - ¥(p)

Then I*(p) has extrera at every value p where

M _a% 1 ar L1 38 -0
P P A 0P 2% 0P




.

This occurs whenever

af

\I/l(P) EYY

or , S ,
Ve £ - v,mL - o

oP apP

This identifies the extraneous roots.
This function I*(p) corresponds to the difference between the

magnitudes of the two velocity increments., Cases where this function has

extrema for real values of p are not hard to loéate. However, every reél

extremum for this function.mnstklie in an interval in uhich Q_»and

the same sign. By using therinterval techniqpe described 1n section

these roots can be identified.




APPENDIX 5

Derivation of Long Transfer Equations: ‘
For the long transfer”’, the lower sign on the double-aign

expressions for ¥, (p) and ¥,(p) (see equationa (22) and 23)) is used.,
' ‘ } . Thus~ A K Gy

VIORLIES STORS RS} ACORS 4

(@, ) +1) . (@ ) + 1)

[(e®) + 20D B, + 1) (o) + 20p) 1y + 1,2

| [h<p>]*

-+ 2V1 -. V(p) + Zz(p) v U1

= bp - 2Bp5+G+2Cp‘§ Dp“l
where the coefﬁ.cients are ;Lven in Tabls 1

Similarly,
\I/z(p) = "k(p)]é
[N
whe;.-e
k(p) = Ap - 2EpA +H + 2rp2 - ppl
and these coefficients are also found in Table 1. )

Equation (32) is now replaced by the tollowing criterion for

the value of p at which the long transfer impulse has a minimum




Now %8 and 9% must be of different sign in order for the long transfer
impulse to have a minimm 'lhen

and

of two tm:rbh-order polmnmials Lol L e

. where s=p§

and

F\I'l(p) _—.«-»m_. B ‘_ B :
o - &
W2'P 5

ap ap

g_t - A Bp"i Cp"3/2+Dp‘2 e LT
P o

QK = A - Ep‘i - F'p-3/2 +Dp-2

g—;—‘ = 0=A34-Bs3-03+n=0 ‘

%zﬂ::Ash-Esj-FS"l‘D:O ) : ,,




's = a is a real root of equation (AS-lO), then s = -a must be & root of

equation (47). The same correspondence holds for the roots g% =0 and

-Q'-{’:=O. "

be ascertained.

An eighth-order polynomial whose roots contain the impulse

minima also exists for the long transfer. By squaring equation (A5-5 ). -3

the necessary expression becomes



